首页> 外文OA文献 >Invariant optimal feature selection: A distance discriminant and feature ranking based solution
【2h】

Invariant optimal feature selection: A distance discriminant and feature ranking based solution

机译:不变的最优特征选择:基于距离判别和特征分级的解决方案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The goal of feature selection is to find the optimal subset consisting of m features chosen from the total n features. One critical problem for many feature selection methods is that an exhaustive search strategy has to be applied to seek the best subset among all the possible View the MathML sourcenm feature subsets, which usually results in a considerably high computational complexity. The alternative suboptimal feature selection methods provide more practical solutions in terms of computational complexity but they cannot promise that the finally selected feature subset is globally optimal. We propose a new feature selection algorithm based on a distance discriminant (FSDD), which not only solves the problem of the high computational costs but also overcomes the drawbacks of the suboptimal methods. The proposed method is able to find the optimal feature subset without exhaustive search or Branch and Bound algorithm. The most difficult problem for optimal feature selection, the search problem, is converted into a feature ranking problem following rigorous theoretical proof such that the computational complexity can be greatly reduced. The proposed method is invariant to the linear transformation of data when a diagonal transformation matrix is applied. FSDD was compared with ReliefF and mrmrMID based on mutual information on 8 data sets. The experiment results show that FSDD outperforms the other two methods and is highly efficient.
机译:特征选择的目标是找到由从总共n个特征中选择的m个特征组成的最优子集。许多特征选择方法的一个关键问题是必须采用详尽的搜索策略来在所有可能的特征子集中寻找最佳子集,这通常会导致相当高的计算复杂性。替代的次优特征选择方法在计算复杂度方面提供了更多实用的解决方案,但是它们不能保证最终选择的特征子集是全局最优的。我们提出了一种基于距离判别(FSDD)的新特征选择算法,不仅解决了计算量大的问题,而且克服了次优方法的弊端。提出的方法无需穷举搜索或分支定界算法就能找到最优特征子集。最优的特征选择最困难的问题,即搜索问题,经过严格的理论证明被转换为特征等级问题,从而可以大大降低计算复杂度。当应用对角变换矩阵时,所提出的方法对于数据的线性变换是不变的。根据8个数据集上的相互信息,将FSDD与ReliefF和mrmrMID进行了比较。实验结果表明,FSDD优于其他两种方法,并且效率很高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号